
1 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

Comp ute r s i n Ch e mis t r y

A Series of CGI/Perl
Scripts for Web-Based
Feedback and Reporting
in the General Chemistry
Laboratory: Colorimetry
JOSEPH F. LOMAX*, AND DEBRA K. DILLNER
United States Naval Academy
Annapolis, MD 21402-5026
lomax@brass.mathsci.usna.edu
dillner@brass.mathsci.usna.edu

JOHN W. VERDE
Johns Hopkins University
Baltimore MD 21218
jverde@extremeweb.com

The series of CGI

scripts for the

experiment

“Analysis of

Brass” provide

the student with

prompt, useful

feedback on

calculations and

analyses.

 series of CGI/Perl scripts for a colorimetry
laboratory report have been written, implemented
and tested. These scripts assist the students by
providing feedback on their data handling and

analysis. Once the students have learned how to correctly
perform the analyses, their results are submitted to their
instructor, who can use the output for evaluation. Student
assessment of this series of scripts is overwhelming positive.
Scripts are included and programming considerations are
discussed.

Introduction
Computers should be used to help us do what we have

A

2 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

difficulty doing well. We should not have them automate processes that we already do
well at a low cost. For instance, automation of a 10-student senior-level special topics
course on the current state of biotechnology would be costly in both time and money
with few outweighing benefits. One place computers can be used efficiently is in large
classes to extract, manipulate, and report data. In addition, with the advent of the
Internet, computers can communicate over any distance at any time [1]. Though
computers have been used to teach students by presenting models in 3D [2–6] and by
showing how multiple variables relate to each other [7], this article will explore
assisting the student with analysis for the laboratory report and assisting the instructor
in grading the final report by utilizing the computer’s speed and accessibility.

One essential component to a chemistry class is the laboratory, and for every
experiment there is a report. Most reports have some computation and analysis and, for
the instructor, there is little that is more frustrating than finding a computational error
that leads the student to an incorrect final analysis. The student, for his or her part, is
oblivious to this error until the laboratory report is returned a week or more later. The
feedback is so removed in time from the original analysis, they can neither learn from
their mistakes nor receive credit for learning. It is part of the learning process to
discover the source of the error and to correct it; however, a student is not able to do so
without the knowledge that their analysis or computation is incorrect. With the CGI
scripts described below, the student can get quick feedback on numerical errors and can
be expected to correct them.

Finally, part of the instructor’s job, whether they like it or not, is evaluation. Any help
that an instructor can get for making evaluation of the student’s performance more
accurate and quicker, is sure to be appreciated. These CGI scripts are also designed to
help in the evaluation process.

The Experiment: Analysis of Brass
Two decades ago, while Professor Ed Koubek of our Department was in a machine
shop, he noticed the brass fillings in a mound on the floor and thought that he could put
together a colorimetric experiment to analyze the copper content. The experiment and
write-up for “Analysis of Brass” (exp7a.PDF) from the General Chemistry Laboratory
Manual is available in the supporting material (36jl1897.zip). The experiment involves
taking a brass sample, manipulating it chemically to form a copper(II) complex, and

http://journals.springer-ny.com/sam-bin/sam/EXTERNAL/36jl1897.zip

3 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

using the absorbance of visible light at 550 nm as a colorimetric probe. This
wavelength is used because (1) the copper(II) complex absorbs there, (2) there is no
significant interference from other species in the solution, and (3) the instrumentation
(Spectronic 20 visible spectrometer) is simple and inexpensive. As is common in many
colorimetric analyses, quantifying the copper in “Analysis of Brass” requires: chemical
manipulation and amplification, calibration of the spectrometer with standards of
known concentration, and comparison of absorption of the unknown solution to the
calibration.

1. The chemical manipulation and amplification of the copper are performed in Part A
of the experiment. The student dissolves all of the brass sample by reacting it with 7 M
nitric acid. (Clearly, the dangers of using 7 M nitric acid and 2 M ammonia (vide
supra) need to be articculated (with only one ‘c’) to the student before they start the
experiment.) The copper in the brass is oxidized to the copper(II) aqua ions in solution.
This gives the solutions a light blue tint. The absorbance of light by the copper(II) ion
in this solution is characteristic but not particularly intense. It is necessary to increase
the absorptivity of the copper species to more fully utilize the dynamic range of the
Spectronic 20, so a stronger-field ligand (ammonia) is added to the solution to work as
a spectroscopic amplifier. The original copper(II) solution is added to a volumetric
flask and 2.0 M ammonia solution is added to the mark. The copper(II) reacts with the
ammonia to make a Cu(II)-NH3 complex (Cu2+ for simplicity) that has a deep blue
color [8].

2. In Part B, the students collect data for a calibration curve. When the students plot the
absorbance of light by Cu2+ at 550 nm versus the concentration of their solution, they
obtain a linear relationship. This is due to the familiar Beer’s Law [9] (equation 1):

A = εbc (1)

where A is absorbance, ε is the molar absorptivity of the complex, b is the path length
and c is the concentration of the solution. With this relationship, they can determine the
concentration of any similar Cu2+ solution that absorbs an amount of light
corresponding to the absorbance values between the most and least concentrated
solutions.

3. With the calibration curve in hand, they can measure the effect of 550 nm light on
their unknown sample and calculate the concentration of the Cu2+. Having calculated

4 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

the concentration and knowing both the total volume of the solution and the mass of
copper in the original sample, the percent copper in the solid sample can be calculated.

Why This Experiment?
As a test experiment for setting up CGI scripts for student interaction and posting of
data, “Analysis of Brass” has some advantages.

1. The laboratory was developed in-house so we need no permission to use it.

2. All analyses are numerical. There are no subjective observations like “deep blue”
that can be described in a myriad of ways.

3. This laboratory allows us to learn how to deal with numerical input. There are many
ways a student might type in a number (e.g., 0.00400, 0.00400, 4.00e-3, 40.0E-4, etc.),
but they can be accommodated by incorporating regular expressions into the scripts. A
regular expression is “a pattern that you can use to find what you’re looking for when it
varies from case to case” [10].

4. There are only simple calculations and analyses involved, such as transforming
percent transmittance to absorbance and linear regression.

5. It is a two part analysis. We could learn to set up the scripts so that the student can
finish one part, then return and finish the other. If we can do this for a two part
analysis, we can adapt and expand as necessary for other more complicated
experiments.

6. Many scripts, for example one used to find the student’s name and section, can be
used in any subsequent set of scripts.

The Series of Scripts
Copies of the scripts are available in the supporting material (36jl1897.zip). The script
names have the suffix “_exp7a” which is the designator for “Analysis of Brass” in our
current General Chemistry Laboratory Manual. This suffix has been removed from the
titles of the following sections for clarity. A flow chart illustrating the movement of the
student through and within the series of scripts is given in Figure 1.

http://journals.springer-ny.com/sam-bin/sam/EXTERNAL/36jl1897.zip

5 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

FIGURE 1. FLOW DIAGRAM OF THE OPERATION OF THE SERIES OF CGI / PERL SCRIPTS FOR THE
COLORIMETRIC EXPERIMENT, “ANALYSIS OF BRASS.” RED LINES REFER TO RESET FORM ACTIONS, WHICH
CLEAR AND RELOAD THE CURRENT PAGE WITHOUT RERUNNING THE CGI SCRIPT. BLUE LINES REFER TO
FORM ACTIONS WHICH LAUNCH THE SAME CGI SCRIPTS WITH NEW INPUT DATA. GREEN LINES REFER TO
FORM ACTIONS WHICH LAUNCH NEW CGI SCRIPTS AND CREATE NEW PAGES.

6 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

welcome.htm
Welcome.htm is the first page of the laboratory that the student encounters (Figure 2).
The file is a standard html (hypertext markup language) page. All of the control
elements, such as font, boldface, headings, forms and links, are given as ASCII text. It
is the job of the web browser to interpret the elements and text and make the page.
Although we used a commercial product to construct html pages [11], many word
processors can save text files in html format.

Welcome.htm gives a very brief introduction to the laboratory and relates what the
student needs to complete before he or she starts with the remaining pages (perform the
laboratory and do the calculations). At the bottom of welcome.htm is a web form
element. A form element is an enclosed group of web elements. These elements can be
used to generate a place where the student can enter information, in this case their
name and student identification number, an “alfa number” in naval-academy-speak. If
what they enter is not satisfactory, they can clear it by selecting the “Reset” button.
Each page has a “Reset” button that causes the current page to be recalled without any
input data; however, if the student is satisfied, he or she can continue by selecting
“Start Lab.”

welcome.cgi and lab.pl
By selecting “Start Lab,” the student has instructed the form to start a series of actions.
In particular, it calls into action the program welcome.cgi. This program resides on the
server; it is not called onto the web browser. Through a Common Gateway Interface or
“CGI,” welcome.cgi allows information to be input into the server and manipulated and
it creates a new webpage (and within it another form). CGI is a protocol that allows
information to be passed from the user to the server to the program and back, and the
extension, .cgi, tells the browser that a program using this protocol is on the way.

Even though the programs may end up being quite long, in the vernacular they are
called CGI scripts. The programming language that we used in all these CGI scripts is
Perl 5.0 (practical extraction and report language) [12]. As programs go, welcome.cgi
is relatively simple. After pulling in the data from the welcome.htm form, the script
calls a subroutine, &find_mid_name (the ‘&’ designates a subroutine in Perl). The
subroutine, &find_mid_name, “asks” a number of questions. Is the alfa number valid?

7 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

FIGURE 2. SCREEN CAPTURE OF THE OPENING PAGE OF THE SERIES OF SCRIPTS, WELCOME.HTM.

8 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

That is, is it a number and not text? Is it the correct length? Does it correspond to a
midshipman, commonly referred to as a “mid,” currently taking the course? The script
then extracts the name of the mid from a file on the server. Finally, the script sends a
new webpage to the mid and includes information derived from find_mid_name, such
as the typed-in name, the extracted name and the alfa number (if it is really valid,
otherwise it reports an error). To keep the subroutine portable, the file name is listed as
the scalar variable, $namedat_url. (A scalar is a simple value such as a number or a
string of text. In Perl, it is denoted by a leading $.) The text value of $namedat_url can
be changed in the CGI script by the programmer to whatever path and name the student
data file may have.

&find_mid_name is an example of a subroutine that is needed for this and other web
pages. Whenever we created such a subroutine, we placed it in a file called the script
library, which we named, lab.pl. Each script that used subroutines from lab.pl would
need to have this line:

require “/usr/path_to_file/lab.pl”;

This essentially makes the library part of the script, so that it can find all the necessary
subroutines. The other script library we used, which has quite a number of useful CGI
scripting subroutines, is cgi-lib.pl [13]. It, too, needs a “require” statement.

The new page created by welcome.cgi allows the student to check that the name
extracted from the alfa information is correct, but its major function is as a branching
page (Figure 3). It allows the student to go to the calibration curve portion of the
analysis or if that has been finished, go on to the analysis of the brass sample. By
selecting either the “known” or “unknown” buttons, a specific subroutine that sends the
mid to a specific new html page is run.

start.cgi
By choosing the “known” path, you will proceed with the calibration curve analysis
starting with start.cgi. The html page formed by following this path, again, has text and
a form. In the text the students are warned to have the correct number of significant
figures in their input values. The text tells the student that this is the data input section
and gives advice on how to copy data directly from a spreadsheet and paste it into the
table. Our students are required to purchase a personal computer, and, for the last
decade, all of these computers have had a spreadsheet loaded, currently Quattro Pro. In

9 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

FIGURE 3. SCREEN CAPTURE OF THE BRANCHING PAGE, WELCOME.CGI.

1 0 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

the current school year the students also have been required to purchase a graphing
calculator, the TI-92. About half used the spreadsheet and half used a calculator (See
Table 1, Question 5). After the data is input into the table, the next CGI script,
datab.cgi, is launched by selecting “Submit Data.”

datab.cgi
As before, once students have submitted the data, a response html page is generated.
There are a few differences between the html page formed by datab.cgi and the
previous one made by start.cgi. This page redisplays their input and may display errors,
indicated by a Charlie flag for a calculation error as shown on the fifth concentration,
or both a Sierra and a Foxtrot flag for incorrect significant figures as shown on the
second concentration and the fourth % Transmittance (Figure 4).

How did these flags appear (or not)? This is the central part of the function of the
datab.cgi script. It also points to where programming begins to assist pedagogy.

The major reason for using CGI scripts in this laboratory is to give the students rapid
feedback on the calculations and analysis reported. Sequentially, the CGI script,
datab.cgi, (1) pulls in the input data; (2) checks to see if all data are numerical; (3)
calculates absorbances from input percent transmittances; (4) checks to see if the
solution concentrations are correct; (5) takes the absorbance calculated by the script
and the solution concentrations and runs a linear regression subroutine to calculate the
slope and intercept of the calibration curve; (6) checks to see if the concentration,
percent transmittance data, and regression analysis submitted by the student have the
correct number of significant figures (three in these cases); (7) checks the regression
slope and intercept against the absorptivity and intercept the student has input; (8)
creates a data file tagged to the alfa number; and (9) creates a new html page.

The new html page has their data and the appropriate flags for significant figure
(Sierra-Foxtrot) and calculation (Charlie) errors. If no data or analysis is flagged, the
student may select the “Continue” button, and this will launch the next CGI script,
unknown.cgi; however, if the student finds error flags he or she will know immediately
that something is wrong. The international signal flags are used because they clearly
indicate where the error is. These flags remain until the student corrects the error, so
their presence is persistent but not insulting. Hopefully, the student will find the error,
correct it, and then select the “Resubmit” button. This sends the revised data through

1 1 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

TABLE 1. Responses from Radio Button Comments. SC151 is the one semester General
Chemistry course for students who have validated one semester. SC111 is the first of two
semesters of General Chemistry. These particular students either are repeating SC111 or they
came from a remedial course. Not all students responded to all questions, except the first. The
only default answer on any question was the “No Comment” on the first question.

SC151 (n = 77) SC111 (n = 99)

1. How well did these webpages help you understand the calculations?

They did not harm me. 21 28

They helped me a little. 16 27

They help me quite a bit. 32 35

They were confusing instead of helpful. 5 7

No Comment. 3 16
2. Would you like to see this method used for other laboratories?

Yes 69 84

No 5 13

3. How many times did you go through this set of web pages?

One 35 38

Two 16 19

Three 13 19

Four 2 5

More than Four 9 16

4. In this final (or only) time, how long did it take you to make it through the webpages from

when you started them until now?

Less than five minutes 24 26

Five to eight minutes 14 17

Eight to fifteen minutes 17 24

Fifteen to thirty minutes 8 11

More than thirty minutes 13 21

5. What type of calculation device did you use to analyze the data?

Quattro Pro (a spreadsheet) 34 49

TI-92 (a required calculator) 32 39

Other calculator 5 6

1 2 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

FIGURE 4. SCREEN CAPTURE FOR THE DATA INPUT PAGE, DATAB.CGI. NOTE THAT THERE ARE A NUMBER OF
ERRORS FLAGGED BY INTERNATIONAL SIGNAL FLAGS. THE “S” AND “F” (SIERRA AND FOXTROT) ARE FOR
SIGNIFICANT FIGURE ERRORS AND THE “C” (CHARLIE) IS FOR A CALCULATION ERROR.

1 3 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

the datab.cgi script and the same calculation and analysis checks described above and
recreates the html, hopefully with fewer or no error flags. Once the student is satisfied,
they can select “Continue.” This page is designed so that the student can continue with
or without errors in the analysis.

unknown.cgi
The text at the top of this page, created by unknown.cgi, includes data (name, alfa, and
graphical slope and intercept) that has been brought along from the previous page. The
form within the page has slots for further data and analysis input. The data is the
unknown brass sample mass and the percent transmittance of the unknown solution,
and the analysis is the concentration determined from the calibration curve as well as
the percent copper by mass. There are intermediate steps involved in the analysis, but
we felt that these were sufficient to allow the student to find the source of any mistakes
that were flagged. As before, the student is expected to input the data and analysis and
select “Submit Data.” This page can also be accessed from the program start.cgi if the
student selects “unknown” on the welcome.cgi page; however, if the student chooses
“unknown” on the welcome.cgi page without having previously completed the
“known” portion (and had the data and analysis resident in an alfa tagged data file), an
error page is returned.

dataa.cgi
Selecting “Submit Data” on the unknown.cgi page causes the form to launch the script
dataa.cgi. It may seem curious to the reader that datab.cgi comes before dataa.cgi. The
“b” and “a” refer to the sections in the laboratory instructions. The decomposition of
the brass is the first action started in the laboratory (Part A), and subsequently, the
unknown solution is made by diluting the resulting Cu(NO3)2 solution with the 2.0 M
ammonia solution. Part B of the laboratory includes making the standard solutions and
the calibration curve. The standard solutions are made as the decomposition of the
brass proceeds in a fume hood (NO2 gas is evolved). The names of the scripts reflect an
idiosyncrasy in the long established experiment.

Many of the same data manipulations and error flag placements occur in dataa.cgi as
occurred in datab.cgi, except that simple algebraic calculations involved in the
“unknown” calculations have replaced those associated with the linear regression in the
calibration curve. In addition, the data file has been retrieved, its data used, and

1 4 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

additional data has been added to the file. To finish off the laboratory when the student
is satisfied, “FORWARD” is selected.

comments.cgi
Transparent to the student, selecting “FORWARD” activates comments.cgi. This script
sends off the laboratory analysis to the instructor. In this way the instructor still gets the
analysis from the student even if the student does not desire to fill out the comment
page. In the usual large general chemistry course, there is only one instructor lecturing
to many students; so, mailing the students’ grades to the instructor involves only one
email address. At the Naval Academy, however, general chemistry has approximately
25 instructors teaching 50 sections of 20 students each. All sections do the same
experiments. In order to send the analysis to the proper instructor, the student’s section
is retrieved using &find_mid_section, and this section number is used in
&find_instructor to retrieve the instructor’s email address from the userno.dat file. Both
subroutines are found in lab.pl, and a “require” statement is placed in comments.cgi for
the file userno.dat. The data and analysis from student input and the computed analysis
are sent to the instructor by email using a formatted MAIL routine.

The html page formed by comments.cgi allows the student the ability to send
comments about the series of web pages. Within the form are two input styles: “radio
button” and text. Each time a radio button comment is chosen an associated array is
called, and the comment phrase connected to that radio button is recognized as an array
key. The value associated with this comment phrase key is incremented by one. This is
how we obtained the count on the comments summarized in Table 1 and discussed in
the “Pedagogical Considerations” section. The written data comments are appended to
files. When the student is satisfied with the comments given, he or she selects
FORWARD.

lastchance.cgi
The final script, lastchance.cgi, informs the student that the series of web pages is
finished, and that the analysis has been sent off to the instructor. Nothing is in place to
stop the student from rerunning the whole set of scripts. The result would be another
email message to the instructor and it would be up to the instructor to accept the latest
analysis.

1 5 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

Error Pages
In our set of scripts the student will get an error page if he or she (1) does not put in an
alfa number in welcome.htm or if there are any nonnumerics (or having input a valid
but an incorrect alfa into welcome.htm), (2) tries to go to the unknown in start.cgi
without having gone through the known part previously, (3) tries to start from the
middle of the series of pages, (4) tries to put in text or a zero value for absorptivity (as
text is given a numerical value of zero in Perl, any text will give this, too). The first
three will cause fatal errors if not caught because the necessary data file is tagged to the
alfa number. The final error has to be trapped because a zero value for absorptivity will
cause a division by zero in a subroutine and propagate a fatal error.

Pedagogical Considerations
The reasons for using CGI scripts for reporting laboratory data are: (1) to give the
student rapid feedback and (2) to allow them to report their data quickly. These are not
online tutorials and are not meant to be. Students encountering significant difficulties
are given a message that encourages them to seek assistance from their instructor. An
added benefit to the instructor is that the students’ results can be reported in a form that
allows for quick evaluation of their efforts.

Each data page allows the student to input data and receive feedback on the accuracy of
calculations as well as whether or not the proper number of significant figures were
used. If the student’s calculations and analysis are all correct, he or she can make it
through this set of web pages rapidly. About half of the students were able to complete
the set the first time through (Table 1, Question 3), and to do so quickly (Table 1,
Question 4).

Although the rapid positive feedback and reporting benefited those students who had
all of the calculation and analysis correct, the real benefit is for those who were
unaware they had errors. Although hints or more human responses could have been
programmed in, the neutral advisory flag was chosen. This de-emphasizes program and
programmer and emphasizes the student’s responsibility for finding the error and
correcting it.

In the initial set of comments, it was found that the number of students taking four or
more times through the page corresponded well with the number who took more than

1 6 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

30 minutes to complete the exercise. It was clear that those with the greatest difficulties
were not benefiting from the pages; they were spending too much time, getting
frustrated, and blaming the method. To deal with this, in each data page, a counting
subroutine, &data_counter, was created so that it could be called from the lab.pl file.
Now, each time the student calls up a particular data page, the counter in
&data_counter autoincrements by 1. If the student is not finished by the fourth time
through a particular data page, a page like the one in Figure 5 comes up. Note that the
responsibility for getting help is still given to the student. If the student chooses to seek
help and if the problem is rooted in the student’s inability, the instructor finds out
quickly and can help. If, instead, the problem is related to programming, the instructor
can contact the webmaster and a fix can be implemented before too many students get
frustrated.

Generally, the program was exceptionally well received (Table 1, Question 1) and, in
particular, the students were interested in seeing more laboratory reports done in this
manner (Table 1, Question 2). It is the hope of the authors to accommodate them with
further laboratory reports using CGI scripts in the near future.

Programming Considerations
The purpose of this paper is to show the method and rationale behind our work so that
it can be adapted in schools that have large laboratory sections and web access. The
purpose is not to provide a specific laboratory for the general chemistry teaching
community to use, nor is it to give them a set of CGI scripts to use, though we hope
that both will happen. The following programming considerations are given for the
chemist who is not a programmer, but wants to provide the student in large sections
with a better laboratory experience.

CGI Scripts
To the uninitiated chemist, using CGI scripts can seem foreign; however, they can be
used to efficiently transfer information across the web. In our environment, where all
students have web access and fast data transfer, we find this type of program, which is
resident on the server, to be more efficient and easier to create and modify than
programs that are sent to the student’s computer, such as Java Scripts. For us, this made
learning how to write GGI scripts worthwhile. Our intent for giving these programming

1 7 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

FIGURE 5. A SCREEN CAPTURE OF A PORTION OF THE DATA INPUT PAGE DATAA.CGI WITH THE WARNING
NOTE.

1 8 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

considerations is so that others can adopt and adapt our scripts to their particular needs
and experiments. Of course, the more you know about the programming language and
its common usages, the larger the variety of adaptations you can make.

The language used for most CGI scripts is Perl. As programming languages go, Perl is
easy to learn; however, an appreciation of programming logic, loops and/or regular
expressions from other languages will certainly speed the transition. There are dozens
of books on CGI/Perl, but the most popular book for learning Perl is Learning
Perl [14], and the reference and more advanced technique text for the field is
Programming Perl [10], also known as “The Camel Book” because of the illustration
on the cover. They contain explanations on how to download and install Perl on your
system whether you use a Unix, Windows, or Mac operating system for your CGI
server. Your choice of which book you want to use for learning CGI scripting is mostly
determined by your level of programming proficiency: introductory, “cookbook,”
accomplished, or expert [13, 15, 16]. You might want to choose a book that includes a
CD-ROM with a Perl compiler, a number of script libraries, and example scripts that
cover some of the functions that you might want to accomplish.

Truth be told, the CGI script can be written in any language that the server can
compile, but there are certain advantages to using Perl besides its ease of learning.
There are many Perl/CGI scripts available on the web, such as those found in Matt’s
Script Archive [17]. Perl scripts tend to be portable; that is, they can be loaded onto
many systems. Thus, often you can piece together the programming functions from
available sources.

Properly assembling the components of a set of scripts involves an exceptional amount
of detail work. A paper in this Journal by Earp and Tissue [1] describes the general
operation of CGI scripts. In the following sections, we present some other
considerations that you need to be aware of if you intend to implement either this set of
web pages or similar sets.

Student Identification Numbers and Filenames
Data is carried through posting of scripts by two methods: hidden variables in forms
and writing/retrieving files. Hidden variables are objects within a form element that

1 9 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

allow data to be brought forward to the next script without the student re-inputting the
data. A command would look like:

<INPUT TYPE=“HIDDEN” NAME=“alfa” value=“$alfa”>

The information within the < > brackets is a command, specifically an INPUT
command whose type is HIDDEN. The data for this hidden variable originated from
student input and carries along the most important hidden variable in these scripts, the
alfa number. Any time a CGI script is called and no alfa number is brought forward
(for example, if the student returns to a page using a bookmark), an error page is
produced with a link to the first page. Alfa numbers are used because they are
unambiguous. You do not need to worry about two students having the same name,
such as David Robinson, or the student using a name that does not exactly fit the
version in the data file. The latter is a particular concern when the student name field in
the data file is too short for the student’s whole name.

The scalar variable, $alfa, is used in separate subroutines to find the student name,
section, and instructor. If this set of scripts were set up at a different school, a data file
with data for each student on each line for each course would be necessary. The subtle
differences in the data file (e.g., student number length, name field length, course name
field) would have to be accommodated in the regular expressions used to find and
retrieve information from this file.

Numerical data, such as the absorptivity, can also be carried to later forms. For it to be
presented in the form as a nonempty scalar variable, a line needs to be put into the
script that reads, for example,

$Absorptivity = $input{Absorptivity};

This puts the value associated with the name “Absorptivity” that is coming from the
input array, into the scalar variable, $Absorptivity.

As mentioned above, the other manner with which one can carry along data is by
opening a file, putting data into it, and retrieving it. An example of a subroutine that
opens a data file and puts data into it is

&open_mid_data($alfa);

2 0 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

In the subroutine, &open_mid_data, the alfa number is carried in and used to name the
file in the statement:

open(MIDDATA,”>$def_data_dir/”.”$alfa\.dat”) || die $!;

The filehandle (a temporary name for the file until it is defined later), MIDDATA, is
used to put data into (the > means to append to a file) the file named by its default data
directory and alfa number, such as /usr/path_to_file/data/999999.dat. If the file is
unable to be opened, the script dies and an error is sent to the standard output ($!). In
addition to making data available at any point in the set of scripts, the data file is used
in two more ways. If the student stops after the known input, he or she can start again
at the welcome.htm page, input their alfa at the branching page, then go directly to the
unknown page. The alfa number is also used as a key to student information to begin
the process of sending analysis and data to the instructor. From the course data file the
alfa number keys the section number. In another file, the section number keys the
instructor’s email address. Pertinent data and analysis are sent to the instructor with the
name and alfa number of the student.

Numbers and their Manipulation
Any time numerical data is input, it is checked to make sure it contains neither letters
(other than “e” for a base-ten exponent) nor more than one decimal point. If either of
these is found, it is flagged with “not a #” in the data slot of the newly posted web
page; however, a separate check subroutine is put in when nonnumeric data in a
numeric field results in the program performing a division by zero (Perl defines the
numerical value of text as zero). If this check finds an improper zero, it preempts the
division by producing an error page with an explanation. Without such a planned
interruption, one gets the infamous “Error 500.” This sight is the one guaranteed source
of dissatisfaction from the student as it stops the process, but gives no information on
the source of the error.

It is always better to try out any conceivable error, such as putting in text into a
numeric field, find out what occurs, and accommodate it. Often this can be
accomplished by making a more sophisticated regular expression or looping routine;
however, when reasonable efforts (and you need to decide what they are) do not
accomplish a fix, have an error page with an explanation and link to the proper repair.

2 1 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

Certainly, there will be errors that students will discover that were inconceivable to
you. We have found the data-throughput counter and the comments page useful
additions to these pages that allow us to pick up programming bugs and correct them
more quickly.

The programming in the calculations presented the least difficulty of all the
programming. The first program written was a least-squares fitting program [18].
Certainly, there are more efficient programs to compute regressions, but it was a good
test of our ability to create and use loops within subroutines for a program. This
program took student input of concentration and percent transmittance and gave values
for slope and intercept against which the corresponding student input was checked for
validity. Note that ®ression calculates the molar absorptivity from the student’s
input concentration data and computer calculated absorbance.

One of our most important programming considerations turned out to be the method for
determining the validity of the student’s input. The correctness of an answer can be
checked by requiring the entered number either be (1) within a certain fraction of the
computer calculated value or (2) within a set range. This was more of a pedagogical
difficulty rather than a programming one. We chose to measure the accuracy of the
reported molar absorptivity by determining whether or not it was within ±3% of the
slope calculated by the ®ression subroutine.

One example of why this decision is critical is in checking the value for the y-intercept
from the linear regression. In a colorimetric experiment, the y-intercept should be zero.
We found that being within a fraction of the calculated value was not a valid measure
of the accuracy. Consider this scenario, which has happened to us a number of times. A
student takes their percent transmission data, calculates absorbance, and enters this data
with three significant figures into their calculator’s regression function. The intercept
value they get is 0.001 absorbance units; however, the CGI script calculates absorbance
as part of its routine and carries 15 significant figures into the regression program and
gives an intercept value of – 0.001. These two values are within 0.002 of each other
and should not cause an error, but – 0.001 is 200% away from the true value of +0.001
absorbance units. Returning an error message when this occurs irritates the students
and detracts from their seeing this method of evaluation as a positive tool.

2 2 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

Normal and Associative Arrays
An array is an ordered list of scalar data. The utility of arrays is that a set of related
values (numerical or text) can be saved in an organized manner without needing to
have a independent name for each variable. An example where a normal array
(designated by an initial @) is used is the recording and checking of the values for
concentration. The array for our list of concentrations could look like:
@conc = (0, 4e-3, 8e-3, 1.2e-2, 1.6e-2, 2e-2).

The last five values in parentheses are values that the students entered into the table.
For ease of use in our subroutines, the initial value in the array is $conc[0] = 0. Note
that (1) the title of this array scalar, conc, is the same as the title of the array, but is
preceded by the scalar marker, $; (2) the key to the scalar value, the 0 in hard brackets,
is always an integer; and (3) the initial key to a normal array is 0. As the data comes
into the subroutine, &check_conc, we put them into the array, one at a time, and when
we need them, we take them out one at a time.

For an associative array (also known as a hash, named by the shorthand for the
symbol %), the key can be any number or text. In other programming languages what
Perl calls a key may be called a pointer. You can input the values for a mathematical
function using a hash, with the x values being the keys for the y values. In our scripts,
we most commonly use hashes for writing and retrieving data into a file. Each piece of
data is given a variable and a value separated by a colon, such as Absorptivity: 30.3. In
this way the key (Absorptivity) and the value (30.3) are associated, but can be taken out
of the file, put into a hash, and used together or separately as needed.

Reporting Data and Analysis to the Instructor
We chose to report the data and analysis to the instructor by email because of the ease
of setting up a formatted MAIL routine. Perl allows you to format a mail message
using variables: scalar, keyed, or results from subroutines. In this way, you can get a
standard format with each student’s input analysis and the calculated analysis using the
student’s data. There are better ways of conveying the student’s report to the instructor
than emailing him or her the results. For example, a file ordered by student section and
name can be used. This could be opened, appended, ordered, and closed each time it is
called. Creating such a script is a bit of a programming challenge, but as it did not have

2 3 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

a direct impact on the pedagogy, we felt it could be left until later. That being said, it is
the next major improvement that will be made on the set of scripts.

Conclusion
The series of CGI scripts for the experiment “Analysis of Brass” provide the student
with prompt, useful feedback on calculations and analyses. Most students who worked
through the scripts within three tries reported that they liked the method and the
instructors were able to evaluate the students rapidly and precisely. Anecdotal evidence
suggests that the students performed better using the scripts, but no control data was
available.

The most overwhelming measure of the student’s acceptance of the use of the scripts
was given by their expressed desire that they would like to see this method used for
other laboratories (Table 1, Question 2). We hope to accommodate them in the near
future. In addition, the Chemistry Department at the Naval Academy is moving
towards electronic publishing of our general chemistry laboratory manual. With
electronic publishing revisions, additions, subtractions, and adaptations can be rapidly
incorporated and we can increase the quality of the graphics. It is anticipated that the
electronically published General Chemistry Laboratory Manual and web-based
analysis scripts will be integrated as more CGI script series become available.

ACKNOWLEDGMENT

We would like to thank Steven J. Stuart, a proper Perl hacker, for his ability to break
our programs and his helpful suggestions on how to fix them. We would like to thank
Edward Koubek for writing the original laboratory “Analysis of Brass.” We would like
to thank John Schultz for the inspiration of the Wiz, a series of mainframe Basic
programs. This work was funded by U.S. Naval Academy Curriculum Development
Program and the Science and Education Apprenticeship Program (DoD).

REFERENCES

1. Earp, R. L.; Tissue, B. M. Chem. Educator 1996, 1(5):S 1430-4171(96)05055-8. Avail. URL:
http://journals.springer-ny.com/chedr/.

2. Lipkowitz, K. B. J. Chem. Educ. 1989, 66, 275.

2 4 / V O L . 3 , N O . 6 I S S N 1 4 3 0 - 4 1 7 1

T H E C H E M I C A L E D U C A T O R h t t p : / / j o u r n a l s . s p r i n g e r - n y . c o m / c h e d r

© 1 9 9 8 S P R I N G E R - V E R L A G N E W Y O R K , I N C . S 1 4 3 0 - 4 1 7 1 (9 8) 0 6 2 5 8 - 8

3. DeKock, R. L.; Madura, J. D.; Rioux, F. C.; Joseph, R. L. In Reviews in Computational
Chemistry; Lipkowitz, K. B.; Boyd, D. B.; Eds.; VCH Publishers: New York, 1993; Vol. 4, pp
149–228.

4. Fitzgerald, J. P. J. Chem. Educ. 1993, 70, 988.

5. Lipkowitz, K. B. J. Chem. Educ. 1995, 72, 1070.

6. Lipkowitz, K. B.; Pearl, G. M.; Robertson, D. H.; Schultz, F. A. J. Chem. Educ. 1996, 73, 105.

7. Zielinski, T. J.; Allendoerfer, R. D. J. Chem. Educ. 1997, 74, 1001.

8. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 5 ed.; Wiley Interscience: New
York, 1988.

9. Beer, A. Gundriss des Photometrischen Calcüles; Friedrich Vieweg und Sohn: Braunschweig,
Germany, 1854.

10. Wall, L.; Christiansen, T.; Schwartz, R. L. Programming Perl, 2 ed.; O’Reilly: Sebastopol, CA,
1996.

11. HoTMetaL PRO, 3.0; SoftQuad, 56 Aberfoyle Cresent, Toronto, Canada M8X 2W4; email:
mail@sq.com.

12. Perl, 5.004; http://www.perl.com/latest.html; Wall, L., OReilly and Assoicates, 101 Morris St.
Sebastapol, CA 95472; email: lwall@netlabs.com.

13. Brenner, S. E.; Aoki, E. Introduction to CGI/Perl: Getting Started with Web Scripts; M & T
Books: New York, 1996.

14. Schwartz, R. L.; Christiansen, T. Learning Perl, 2 ed.; O’Reilly: Sebastapol, CA, 1997.

15. Patchett, C.; Wright, M. CGI/Perl Cookbook; McGraw Hill: New York, 1997.

16. Herrmann, E. Teach Yourself CGI Progamming with Perl5 in a Week; Sams.net: Indianapolis, IN,
1996.

17. Matt’s Script Archive; http://www.worldwidemart.com/scripts/; Wright, M., Worldwidemart.com,
Fort Meyers, FL; email: mattw@worldwidemart.com.

18. York, D. Can. J. Phys. 1966, 44, 1079.

	Introduction
	The Experiment: Analysis of Brass
	Why This Experiment?
	The Series of Scripts
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Figure 4
	Error Pages
	Pedagogical Considerations
	Programming Considerations
	CGI Scripts
	Figure 5
	Student Identification Numbers and Filenames
	Numbers and their Manipulation
	Normal and Associative Arrays
	Reporting Data and Analysis to the Instructor
	Conclusion
	ACKNOWLEDGEMENT
	REFERENCES

